
Journal of Applied Mechanics and Technical Physics, Vol. 40, No. I, 1999 

ON T H E  E X I S T E N C E  OF T H R E E  S O L U T I O N S  F O R  A S U P E R C R I T I C A L  S T E A D Y  F L O W  

OF A H E A V Y  F L U I D  O V E R  O B S T R U C T I O N S  

K. E. Afanas 'ev  and S. V .  S tukolov  UDC 532.5 

The paper is devoted to the solution of the steady problem of ideal incompressible fluid flow 
over a semi-circular cylinder located at the bottom. Calculations showed that the problem has 
at least three solutions for the Froude number. In the absence of an obstruction at the bottom, 
the proposed algorithm allows one to construct solitary waves up to limiting waves. The paper 
reports the most important wave characteristics: circulation, mass, and potential and kinetic 
energy. Analysis of  the calculation results leads to the conclusion that all maximum values of 
the solitary-wave characteristics are attained before the Inazimum amplitude and the maximum 
of the mass does not coincide with the maxima of the total energy and the Froude number. 

Heavy fluid flows have been the subject of extensive research. For example, Kiselev and Kotlyar [1] 
solved the problem of supercritical flow of a heavy fluid in a channel with a curvilinear bottom and drew the 
important conclusion that when the shape of an obstruction at the bottom is symmetric, the shape of the 
free surface is also symmetric. However, for flow over a mound at Froude numbers (Fr) close to unity, the 
problem has a nonunique solution. Moiseev [2] was the first to prove this fact. The problem of constructing 
two solutions in an exact nonlinear formulation was studied numerically by Guzevskii [3], who showed that 
in the absence of an obstruction, the first solution corresponds to a rectilinear flow, and the second describes 
a solitary wave. Instead of the Froude number, Guzevskii [3] introduced the parameter V = vo/vcr which 
describes the ratio of the velocity v0 of the wave crest to the free stream velocity v~. Thus, the Froude 
number is a function of V: Fr = Fr(V). The introduction of the parameter V ensures a unique solution of the 
problem of flow over obstructions and allows one to construct waves (up to limiting waves) over the entire 
range of Froude numbers. The existence of gravity waves with a rather long period, including solitary waves, 
was proved by Lavrent'ev [4]. Using the variational principle, Plotnikov [5] established that for an infinite set 
of Froude numbers, the problem has at least two different solutions. 

In the present paper, we show that there is a range of Froude numbers (for waves of maximum 
amplitude) in which this problem has three solutions. The problem is solved by the method of complex 
boundary elements [6]. The accuracy of the method is checked by test calculations and comparison of the 
results obtained with results of other authors. 

1. Fo rmula t ion  of t h e  P r o b l e m .  We study the problem of ideal, inviscid, incompressible fluid flow 
with free boundary 6'1 along bottom 6'3 consisting of rectilinear segments and a cylindrical bulge of radius R. 
The flow region D is bounded, in addition, by inlet C2 and outlet C4 (Fig. 1). This problem can be described 
by the Laplace equation 

Aw(z) = O, z = x + iy E D 

for the complex potential function w(z) = ~(x ,y)  + i r  where ~(x,y) is the velocity potential and 
r  is the stream function, both satisfying the Cauchy-Riemann conditions. At the edges of the flow 
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region and at the bottom, the following boundary conditions are satisfied: 

Imw(z)  = 0, z E Ca, Imw(z)  = Imz,  z E 6'2, 6'4. 

The free boundary is a streamline ( Imw = 1), on which the Bernoulli relation 

dw 2 
= 1 - 2( Imz - 1)/Fr 2, z E 6'1, (1.1) 

is valid. Here Fr = Voo/v/-~ (H is the depth and Voo is the incoming flow velocity). The free surface 6'1 is 
not known beforehand and should be found numerically in the course of solution of the problem. 

2. C a u e h y  I n t e g r a l  F o r m u l a .  It is known that  for any analytic function w defined on a piecewise- 
4 

smooth boundary 6" = U Cj, the Cauchy integral formula 
j--1 

1 / w(z) dz, zo6D, 
, , , ( zo )  = ~ i _  ~ - zo  

c. 
is valid. 

In addition, the function w(z) satisfies the H61der-Lipschitz condition at the boundary C: Iw(zl) - 
w(z2)l < k [ z l  - z2[ ~ where 0 < a ~< 1, k is a constant, and zl and z2 are any two points on the boundary C. 

Then, it follows from the Sokhotskii formulas that  for any point z0 6 C, the relation 

w(z0) = w(z +) -- w(z o) = {__.z+ ~-~r/lim 1 cf -~--~_~dz=W(Z) 1 f w(z) dz lw(z0)  + v.p.T~/ ~ -  z0 
C 

is valid. Hence, 

1 / w(z) dz, zOE 
w ( z 0 )  = ~ _  z - z0 C. 

c 

The limit ~ ~ z + implies that  the point ~ tends to the point z0, remaining inside the region D, W(Zo) = O. 
Since, during the iterative process, the real part Re w(z) is known on the free surface and the imaginary 

part Imw(z)  is known on the solid walls, for the function w, we have a mixed boundary-value problem. A 
numerical solution of this problem can be obtained by dividing the contour C into N linear elements F i by 
nodes z i (j = 1, N).  Then,  we have 

w(z) = lim G(z), 
max [Fj [--,0 

n n 

where G(z) is a linear global test function for z E E Fi and G(z) = E wjAi(z),  where w i is the value of 
j = l  j= l  

w(z) at the point zj, and Aj(z) is a linear basic function: 

( Z  - -  Z j ) / ( Z j  - -  Zj--1), Z E [ ' j--l ,  
A j ( z )  = ( z ~ + l  - ~ ) / ( ~ j + l  - z i ) ,  z ~ U ,  

0, z ~ Fj-1 U F t. 

After the indicated division and linear approximation of the function w(z) on the boundary, the Cauchy 
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TABLE 

N(Ng) 
72(30) 

145(60) 
290(120) 
580(240) 

El 

5.5- 10 -3 
1.3.10 - 3  

3.1 �9 10 -4 
7.6 �9 10 -s 

E2 

2.0- 10 -3 

6.5. 10 -4 

6.2- 10 -4 

6.0.10 -4 

E3 

1 . 6 -  10 -2 
9.3- 10 -3 
8.7- 10 -3 
5.7.10 -3 

max ly ~ - y"l 

1.3- 10 - 3  

7.2.10 -4 
5.4- 10 -4 
3.2- 10 -4 

integral can be calculated analytically in the sense of the principal value as z ~ z i .  As a result, we obtain 

N / \ 

xzi-1 - z i /  ,,,=t 
m~j, j+l 

where 

I. Z m + l - - Z m  Z m + l ~ Z m  J \ Z m - z j  / "  

Subst i tut ing the known real or imaginary parts of the function w at j = 1 ,N  into this equality, we 
obtain a system of N linear algebraic equations for N unknowns to determine Re w on 6'3 and (74 and Im w on 
C1 and G2. The  accuracy of the calculation and the convergence of the method  were verified by a procedure in 
[7]. It is required to find a solution of the Laplace equation in the region D = {0 ~< z ~< 2~r; - 1  ~< y ~< sin(z)}, 
for which the nonpenet ra t ion  condition Im w(z) = 0 is imposed at the bo t tom and vertical walls, and the 
condition Rew(z)  = - c o s ( z ) c o s h ( y  + 1), whose right side is a harmonic function, is imposed on the upper 
boundary. Table 1 lists the  relative errors versus the number  of nodes on the boundary  (N is the number  of 
nodes over the  entire boundary  and Ng is the number  of nodes on the  free boundary):  

max IIm w ex - Irn w"l m a x  ex - V=nl m a x  IVy r - Vy"l 
E t  = max [Im w ex [ ' E 2  = , E3  = m a x  IV 'l max IVy* I 

Here w n, Vt" , and V~ are numerical  values of the complex potential  function and velocity vector components,  
and ImweX(z,y) = s in(z)  sinh (y + 1), V~ x = s in(z)  cosh (y + 1), and V; x = - cos ( z ) s inh(y  + 1) are exact 
v a l u e s .  

Double Nodes. The  solution of hydrodynamic  problems by numerical methods  involves considerable 
difficulties in satisfying the boundary conditions at the angular points belonging simultaneously to the 
boundaries of the regions of definition of the real and imaginary parts of the function w. Incorrect handling of 
these nodal "singularities" affects the accuracy of the results and the stability of the algori thm in simulation of 
the free boundaries. In boundary-element  methods,  the indicated difficulties can be surmounted by introducing 
double nodes. 

Let a double node be described by the identi ty zm+l ~ zm. We assume tha t  zm E C1 and the potential 
Rew is defined at this node, and at the node zm+l G C2, the function I m w  is defined. By virtue of the 
continuity of the function w, at the double node the following natural  conditions are satisfied: 

Imwm = Imwm+l ,  Rewm+l  = Rewm. (2.2) 

In this case, one should replace the ruth and (m + 1)th lines in system (2.1) by condition (2.2). In 
addition, the elements of the ruth and (m + 1)th columns of the matrix of system (2.1) do not contain 
contributions of integrals over the element F,n, which has zero length. At the points of intersection of the free 
boundary C1 with the lateral segments C2 and C4 the boundary  conditions change, and, hence, the problem 
is solved using the proposed procedure. 

3. A l g o r i t h m  of  C o n s t r u c t i n g  t h e  F ree  B o u n d a r y .  Determination of the Potential. Let the 
boundary C1 be known in the kth approximation.  To begin an iterative process, it is necessary to find 
the potential ~(x,y)  = Rew(z)  on the boundary C1. From the Bernoulli relation (1.1), the velocity-vector 
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magnitude is expressed as 

y)/Fr 2. 
~ z  = q =  

Using the procedure proposed in [3], we introduce the parameter V = vo/voo. Then, Eq. (3.1) becomes 

(3.1) 

/ 
Y 1 

q = ~i - (i - V 2) 
Y0 - -  I '  (3.2) 

where y0 is the ordinate of the point on the free surface at which the velocity v0 is given. 
Since the boundary CI is a streamline, the velocity vector on it is tangent to the contour. Hence it 

follows that q = O~p/as. Since the potential is determined with accuracy up to the additive constant, we set 
~l = 0. Next, for any point on the free boundary, we have 

q0i+l = qoi + qi + qi+l As i ,  (3.3) 
2 

where i = 1, N 9 are the nodal point numbers on the free boundary, qi = q(yi) is given by formula (3.2), and 

A s i  = <(x i+l  - x i )  2 + (yi+l - yi) 2 is the length of the ith element of the free boundary. 
Determinat ion  o f  the Free-Boundary Shape. The algorithm of determining the free boundary is as 

fol lows: 
(1) let a certain position of the free boundary C~ k) be known; 

(2) the values of qoi at nodes zi on C~ k) are determined from (3.3); 
(3) the system of linear equations (2.1) is solved; 

(4) the values of the velocity vector components are determined at points of the free boundary C~ k) 

dw dw 
Ui = Re  dz  ' V~ = - I m  dz  ; 

(5) from the condition of collinearity of the velocity vector and the tangent to the boundary ( d y / d x  = 

V / U ) ,  the  n e w  position of the free boundary C} k+1) is calculated: 

i+1  = " Jr  

Here the increment Ay/k is determined by expansion in the Taylor series: 

- + 5 - xi)  + "  + - : i ) 4 .  

The cycle is repeated until attainment of the required accuracy: m.ax ly/k+l -y/k] < r Then, the Froude 
! 

number is evaluated from the formula Fr = <2(y0 - 1)/(1 - V2). As a zero approximation, the straight line 

y0 = 1 is used. The exception is the vicinity of the point y0, in which the initial value y0 ~ = 1 Jr 0.001 is 
assigned. 

The derivatives at points on the boundary of the region were calculated by schemes of high-order 
accuracy [8]. Testing the algorithm of constructing the free boundary by the procedure proposed in [3] showed 
the high accuracy and convergence rate. According to this procedure, the equation of the streamline r -- 1 is 
derived from the velocity distribution on it by solving the problem of an ideal infinite fluid flow over a cylinder 
analytically. The deviations of the free boundary from the exact solution versus the number of points on the 
boundary, obtained as a result of five iterations, are given in Table 1. 

The algorithm used to construct the free boundary was successfully employed previously [9]. The 
difference is, that in the present work, the increment Ay is found by expansion in a Taylor series. This reduces 
the number of iterations and increases the accuracy of the method, especially for limiting regimes. 

4. Discussion of t he  Resul t s .  Flow over Obstructions. If the problem of fluid flow over obstructions 
is solved using the Bernoulli integral (3.1), it is possible to construct only a trivial solution that describes 
uniform flow with disappearance of the obstruction. In this case, the solution is valid for some values of 
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the Froude number  (Fr /> 1) tha t  depend on the ratio R/H (R is the radius of the cylinder and H is the 
depth of the flow) and below these values a steady solution does not exist. This problem also admits  a second 
solution, which was obtained in [3]. Vanden-Broeck [10] also sought two solutions and calculated the relation of 
between the wave ampli tude and the  Froude number  for R/H = 0.2 and 0.5. He did not completely calculate 
the problem in the region of ampli tudes  close to the limiting value. Guzevskii [3] gives a detailed calculation 
only for R/H = 0.1 and does not note that  the dependence of the ampli tude A = A(Fr) is multivalued for 
ampli tudes close to the limiting values. Results of our calculations, which are given in Fig. 2, showed that  
the nonlinear problem of an ideal heavy fluid flow over an obstruction has an additional,  third the solution in 
the region of limiting values of the wave ampli tude.  The  nonuniqueness of the solution for a solitary wave is 
noted by Vanden-Broeck [10] and Longuet-Higgins and Fenton [11]. 

Figure 2a shows calculated values of the ampl i tude A versus the Froude number  for different values 
of R/H. Curve 1 corresponds to R/H = 0 and describes a solitary wave, and curves 2-9 correspond to the 
ratio R/H = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, and 1.1. The dot-and-dashed curve connects points of the curves 
that  correspond to the max imum value Amax = Fr2/2. The  dot ted  curve near curve 5 corresponds to the 
calculations of [10]. The rectangle shows the region in which there is ambiguous behavior of the solution 
in the zone of the limiting wave. This region is scaled up in Fig. 2b, where the calculations for R/H = 0 
(solitary waves) completely agree with the calculations of Maklakov [12] using his theory (the calculations 
for R/H = 0.1 are taken from [31, and the calculations for R/H = 0.2 are taken from [10]). The dependence 
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TABLE 2 

A Fr K P T M 

0.10006 
0.19975 
0.24940 
0.30008 
0.34902 
0.39949 
0.44980 
0.49910 
0.54977 
0.59901 
0.64913 
0.70006 
0.73890 
0.74988 
0.78046 
0.79740 
0.83328 ~ 

1.04663 
1.07004 
1.11523 
1.13691 
1.15716 
1.17735 
1.19674 
1.21616 
1.23407 
1.25017 
1.26556 
1.27938 
1.28779 
1.29002 
1.29387 
1.29457" 
1.29095 

0.02477 
0.04759 
0.10924 
0.14719 
0.18757 
0.23251 
0.27999 
0.33033 
0.38100 
0.42907 
0.47591 
0.51759 
0.54148 
0.54685 
0.55413 
0.55232 
0.53512 

0.02391 
0.04522 
0.10063 
0.13371 
0.16823 
0.20596 
0.24512 
0.28533 
0.32554 
0.36317 
0.39891 
0.42978 
0.44693 
0.45023 
0.45441 
0.45200 
0.43784 

0.04869 
0.09282 
0.20988 
0.28091 
0.35580 
0.43847 
0.52512 
0.61567 
0.70655 
0.79225 
0.87482 
0.94738 
0.98841 
0.99709 
1.00854" 
1.00433 
0.97297 

0.71044 
0.91130 
1.22732 
1.36221 
1.48121 
1.59362 
1.69567 
1.79163 
1.87257 
1.93812 
1.99159 
2.02689 
2.03693" 
2.03541 
2.02286 
2.00675 
1.97147 

N o t e .  The asterisk distinguishes maximum values. 

of the Froude number on the parameter  V for the same values of R / H  is given in Fig. 2c, which illustrates, 
although less vividly, the non-single-valued function Fr = Fr(V) in the zone of limiting waves. 

Figure 3a shows the free-surface shapes for R / H  = 0 that  correspond to three solutions for the same 
Froude number Fr = 1.2910 at A = 0.8332, 0.7531, and 0 (curves 1-3), and Fig. 3b shows solutions for 
R / H  = 0.2 and Fr = 1.3322 at A = 0.8875, 0.8220, and 0.1106 (curves 1, 2, and 4). For the last case, the 
wave shape for the Froude nuinber that is maximum for the first solution and the beginning of the second 
solution is also given, Fr = 1.1704 and A = 0.2355 (curve 3). 

Integral Characteristics of  Solitary Waves. Determining integral characteristics such as the circulation 
C, mass M, and potential P and kinetic K energies is an important  issue. These characteristics can be used 
to check the accuracy of the numerical method.  Steady fluid flow was considered above. To characterize a 
solitary wave propagating on "calm" water, we introduce the new function W ( z )  = Fr(w(z) - z) (~ = Re W 
and �9 = Im W). 

Longuet-Higgins and Fenton [11] proved that  for solitary waves the following relations are valid: 

K = Fr(FrM - C)/2;  (4.1) 

P = (Fr 2 - 1)M/3. (4.2) 

These integral relations were used to check the accuracy of the solitary waves obtained since all quantities 
that enter in these equations were determined numerically from the formulas 

1 b 1Ng 
p = 2 f y2 dz = -6 i=1~'~(Y2 + yiyi+l + y2+l) (Xi-  X,+l); (4.3) 

I I  

K = --~ -~s ds -= - 12 (2~ipi + ~iPi+l + ~i+lPi + 2~i+lPi+l)Li; (4.4) 

b b Ng 

l ( f  f ) li_~l M = -~ y dx - x dy = ~ (Yi+l + yi)(zi+l - xi) - (Zi+l + xi)(Yi+l - Yi); (4.5) 
11 a - -  
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TABLE 3 

Fr A 

1.2861 0.8270 

1.2881 0.8296 

1.2909 0.8332 

1.2909 0.8332 

1.2909 0.8332 

1.2909 0.8332 

1.2910 0.8333 

M 

1.973 

1.963 

1.970 

1.970 

1.970 

1.971 

P 

0.435 i 

0.431 

0.438 

0.438 

0.438 

0.438 

K 

0.534 

0.527 

0.534 

0.534 

0.534 

0.535 

Source 

[15] 
[18] 
[lq 
[10] 

[141 
[13] 

Present paper 

2.0 M = 

1.5 i 

Fr i 

1.0 

T i 

0.5 K i 

0 0.4 A 

Fig. 4 

] O~ ds c =  = r  (4.6) 
a 

Here a and b are the abscissas of the points of intersection of the free boundary with the boundaries of the 
regions C2 and C4, respectively, Li is the length of the ith element, Ng is the number of points on the free 
surface, and pi = (Oq!/Os)i. 

The absolute error in calculating the potential and kinetic energies by formulas (4.1)-(4.5) is 10 -3 
for small and limiting waves and 10 -5 for waves in the middle of the examined range. These estimates are 
obtained for a total number of elements of 290. 

Table 2 gives the following calculated characteristics of solitary waves versus the amplitude: the Froude 
number, kinetic, potential, and total energies, and mass. These characteristics are shown in graphical form 
in Fig. 4. It is important to note that all maximum values of the solitary-wave characteristics are attained 
before the maximum amplitude is .reached, and the maximum of the mass does not coincide with the maxima 
of the total energy and Froude number. This is also noted in [11]. 

Characteristic of Limiting Waves. The problem of constructing waves of limiting amplitude has been 
the subject of extensive research, but, by virtue of the complexity of this problem, many of the results obtained 
differ from each other. Some of them are shown in Table 3. Analysis of the cited papers leads to the conclusion 
that the most accurate calculations of solitary waves have been obtained by Sherykhalina [13] and Evans and 
Ford [14] (A = 0.833199 and Fr = 1.290890). The values of all characteristics obtained in our calculations 
differ from them by the fourth decimal place. 

The first two lines of Table 3 gives the results obtained from the analytical relations for a solitary wave. 
Karabut [15] determined wave shapes on the basis of exact summation of Whiting series. Longuet-Higgins 
[16] obtained an approximate wave shape analytically using a priori characteristics of a solitary wave. 
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